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Abstract

We present a neural network architecture based upon the Autoencoder (AE) and
Generative Adversarial Network (GAN) that promotes a convex latent distribution
by training adversarially on latent space interpolations. By using an AE as both the
generator and discriminator of a GAN, we pass a pixel-wise error function across
the discriminator, yielding an AE which produces non-blurry samples that match
both high- and low-level features of the original images. Interpolations between
images in this space remain within the latent-space distribution of real images as
trained by the discriminator, and therfore preserve realistic resemblances to the
network inputs.

1 Introduction

Generative modeling is quickly becoming an important tool for generating and exploring stimulus
spaces in fields such as psychology, linguistics, and neuroscience. The ability to infer abstract and
low-dimensional representation’s of datasets (as achieved by dimensionality reduction) and to sample
from these distributions, to quantitatively vary complex stimulus spaces, provides a powerful tool for
psychophysical experimentation.

Two unsupervised neural network based algorithms, the Autoencoder (AE; Hinton and Salakhutdinov
2006) and Generative Adversarial Network (GAN;|Goodfellow et al.[2014), are at present the most
popular tools in generative modeling. Unsupervised neural network approaches are often ideal
generative models because they require little or no tweaking of network architectures to handle
entirely new datasets. However successful, a lack of certain constraints on the generative capacity
of current neural-network based generative models make it challenging to infer structure from their
latent generative representations.

We propose a novel unsupervised generative neural network architecture which controls for the
structure of latent representations, and promotes convexity in the model’s generative capacity.

1.1 Background on Generative Adversarial Networks (GANs) and Autoencoders (AEs)
An AE is a generative neural network which takes as input X (e.g. a set of images), and is trained to

generate a reproduction of the input G(X), by minimizing some error function between the input X
and output G(X) (e.g. pixel-wise error). This translation is usually performed after compressing the
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representation X into a low-dimensional representation Z, where the number of dimensions in Z is
equal to the number of neurons in the compressive layer. The low-dimensional space in which Z
lives is called a latent space, and the layer corresponding to Z in the neural network is often called
the latent layer. The first half of the network, which translates from X to Z, is called the encoder; the
second half of the network, which translates from Z to X, is called the decoder. The combination
of these two networks make the AE capable of both dimensionality reduction (X — Z;Hinton and
Salakhutdinov|2006), and the recovery from latent space back into the original high-dimensional
space (Z — X).

GAN architectures comprise two networks, a generator and a discriminator, in which the generator
takes as input a latent point, Z, drawn randomly from a distribution (e.g. uniform or normal), and is
trained to produce a sample G(Z) in the data domain X. The discriminator takes as input X and
G(Z), and is trained to differentiate between real X, and generated G(Z) samples, typically by
outputting either a 0 or 1 in a one-neuron layer. The generator is trained to oppose the discriminator
by ’tricking’ it into categorizing G(Z) samples as X samples. Intuitively, this results in the generator
producing G(Z) samples indistinguishable (at least to the discriminator) from those drawn from the
distribution X . Thus the discriminator acts as a ’critic’ of the samples produced by a generator that is
attempting to reproduce the distribution X.

Both GANs and AEs have become very popular in generative modelling, however their generative
capacities are fundamentally limited by architectural constraints. Here we describe some of these
limitations, and propose a generative architecture, GAIA, that utilizes aspects of both the AE and
GAN to negate shortcomings of each architecture independently. Our method provides a novel
solution to increasing the stability of network training, the convexity of latent space representations,
the preservation of high-dimensional structure in latent space representations, and the bidirectionality
of adversarially generated data.

1.2 Convexity of latent space

Generative latent-spaces enable the powerful capacity for smooth interpolations between real-world
signals in a high-dimensional space. Linear interpolations in a low-dimensional latent space often
produce comprehensible representations when projected back into high-dimensional space (e.g. |[Engel
et al.| 2017, |Dosovitskiy et al/2015). In the latent spaces of many network architectures such as AEs,
however, linear interpolations are not necessarily justified, because latent-space projections are not
trained explicitly to form a convex set.

A convex set of points is defined as a set in which the line connecting any pair of points will fall
within the rest of the set. For example, in Figure[T|A, the purple distribution represents data projected
into a two-dimensional latent space, and the surrounding whitespace represents regions of latent
space that do not correspond to the data distribution. This distribution would be non-convex, because
a line connecting two points in the distribution (e.g. the black points in Figure[TJA) could contain
points outside the data distribution (the red region). In an AE, if the red region of the interpolation
were sampled, projections back into the high-dimensional space may not necessarily correspond to
realistic exemplars of X, because that region of Z does not belong to the true data distribution.

One approach to overcoming non-convexity in a latent space is to force the latent representation of
the dataset into a pre-defined distribution (e.g. a normal distribution), as is performed by Variational
Autoencoders (VAEs; Kingma and Welling|[2013)). By constraining the latent space of a VAE to fit a
normal distribution, the latent space representations are encouraged to belong to a convex set. This
method, however, pre-imposes a distribution in latent space that may be a suboptimal representation
of the high-dimensional dataset. Standard GAN latent distributions are sampled directly, similarly
allowing arbitrary convex distributions to be explicitly chosen for latent spaces. In both cases, hard-
coding the distributional structure of the latent space may not respect the high-dimensional structure
of the original distribution.

1.3 Pixel-wise error and bidirectionality

AEs tend to produce blurry images due to their pixel-wise error functions [Larsen et al.| [2015]], which
minimize error by smoothing the sharp contrasts (edges) present in real images. GANs do not suffer
from this blurring problem, becasue they are not trained to reproduce input data, but rather to generate
data that could plausibly belong to the true distribution X. Because the discriminator is trained to
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Figure 1: (A) GAIA network architecture. (B) An example AE latent distribution (purple) which
is non-convex. Black circles represent two projections from X to Z and the solid line between
them represents an interpolation, in which the red portion are points in the interpolation that do not
correspond to the distribution of X . The dashed line represents an interpolation which passes through
only the true data distribution. One hypothesis is that the distribution on the left will warp to produce
linearly interpolations within the distribution. (C) An alternative hypothesis is that by training the
network upon interpolations, samples in the interpolated regions (lighter purple) will be trained to
generate data similar to the X, without manipulating the distribution of Z. (D) The distribution
remains non-convex, because two point interpolations do not reach all of the spaces in between the
interpolated data distribution.

recognize image features, such as blurriness, that could potentially distinguish between X and G(X),
the discriminator of GANs enforces the generation of images that are not blurry. Producing data that
fits into the distribution of X, rather than reproducing individual instances of X; comes at a cost
however. While AEs learn both the translation from X to Z and Z to X, GANSs only learn the latter
(Z — X). In other words, the pixel-wise error function of the AE produces blurry images but is
bidirectional, while the discriminator-based error function of the GAN produces sharp images and is
unidirectional.

2 Generative Adversarial Interpolative Autoencoding (GAIA)

Our model, GAIA (Figure |I| left), acts as a GAN in which both the generator and the discriminator
are AEs. The discriminator is trained to minimize the pixel-wise error (¢1) between input real images
(X) and their AE reproduction in the discriminator (D (X)) while maximizing the AE error between
images generated (G(X)) by the generator and their reproduction in the discriminator (D(G(X))):

X = DX, = [|[G(X) = D(G(X))ll,

The generator is trained on the inverse, to minimize the pixel-wise error between input (X) and output
(D(G(X))) images such that the discriminator reproduces the generated images to be as close to the
original image as possible:

1G(X) = D(G(X))ll,



Figure 2: Interpolations between autoencoded images in our network. The farthest left and right
columns correspond to the input images, and the middle columns correspond to a linear interpolation
in latent-space.

Using an AE as a generator has been previously been used in the VAE-GAN [[Larsen et al, 2015]],
and decreases blurring from pixel-wise error in AEs at the expense of exact-reproduction of images.
Similarly, using a discriminator as an AE has been previously used in BEGAN |,
, which has been shown to improve stability in GANs but remains unidirectional'l In GAIA,
we combine these two architectures, allowing the generator to be trained on a pixel-wise error that is
passed across the discriminator, explicitly reproducing images as in an AE, while producing sharper
images characteristic of a GAN.

In addition, linear interpolations are taken between the latent-space representations of images:
Zinterp = interpolate(Z o, Z2.,)

gen’ “gen
Where interpolations are Euclidean interpolations between pairs of points in Z, sampled from a
Gaussian distribution around the midpoint between Z, glen and Z;en. The midpoints are then passed
through the decoder of the discriminator, which are treated as generated samples by the GAN error

function:
|G (Zinterp) — D(G(Zinterp))|1
The discriminator is trained to maximize this error, and the generator is trained to minimize this error.
In full, the loss of the discriminator, as in BEGAN, is to minimize pixel-wise error of real data, and
maximize pixel-wise error of generated data (including interpolations):
Lpise :HX - D(X)||1+
1G(X) = D(G(X))ll,+ ()
HG(ZinteT';ﬂ) - D(G(Zinterp))Hl
The loss of the generator is to minimize the error across the descriminator for the input images
inputted into the generator (D(G(X))), along with the minimizing the error of the interpolations
generated by the generator (D(G(Zinterp)))-
Lgen =X = D(G(X))],—
HG(ZinteTp) - D(G(Zinterp))Hl

In summary, the generator and discriminator are both AEs, allowing us to pass a pixel-wise error
across the two AEs, allowing the generator to produce images which are autoencoded but not blurry.
We also train the network on interpolations in the generator, to explicitly train the generator to
produce interpolations which deceive the discriminator. As a result, our inference method more
greatly resembles the original data than other GAN-based methods (Figure[5).

2)

! Although it is possible to find the regions of Z most closely corresponding to X



2.1 Preservation of local-structure in high-dimensional data

VAEs and GANSs force the latent distribution of a dataset of faces to into a pre-defined distribution,
for example the Gaussian or uniform distributions. This approach presents a number of advantages,
such as ensuring latent space convexity and thus being better able to sample from the distribution.
However, these benefits are gained at the loss of respecting the structure distribution of the original
dataset in high-dimensional space. To better respect the original high-dimensional structure of the
dataset, we impose a regularization between the latent space representations of the data (£), and the
original high dimensional dataset (X).

For each minibatch presented to the network, we compute a loss for the distance between the log of
the pairwise Euclidean distances of samples in X and Z space:

B
1 (Xi — X;)? (Zi — 2;)?
Laist(X,Z) = = logs [ 1+ J —logs [ 1+ J
B zz; ¥ iy (X — X;)? N i j(Zi — Z;)?

We then apply this error term to the generator to encourage the pairwise distances of the minibatch in
latent space to be similar to the pairwise distances of the minibatch in the original high-dimensional
space. A hyperparameter («) is used to balance the emphasis of the structure loss against the loss of
the reconstruction/adversarial losses, which was set at half the learning rate (1=%/2).

2.2 Instability in adversarial networks

GANS are notoriously challenging to train, and refining techniques to balance and properly train
GANSs has been an area of active research since the conception of the GAN architecture (e.g. Berthelot
et al.[2017}Salimans et al.|2016, [Mescheder et al.|2017, |Arjovsky et al.[2017). In traditional GANSs, a
balance needs to be found between training the generator and discriminator, otherwise one network
will overpower the other and the generator will not learn a representation which fits the dataset. With
GAIA, additional balances are required, such as between reproducing real images vs. discriminating
against generated images, or balancing the generator of the network toward emphasizing autoencoding
vs. producing high-quality latent-space interpolations.

We propose a novel, but simple, GAN balancing act which we find to be very effective. In our
network, we balance the GAN’s loss using a sigmoid centered at zero:

1

In which b is a hyper-parameter representing the slope of the sigmoi and d is the difference between
the two values being balanced in the network. For example, the balance in the learning rate of the
discriminator and generator is based upon the loss of the real and generated images:

Opise < sigmoid(||X — D(X)||, — [|X — D(G(X)||; + G (Zinterp) — D(G(Zinterp))|l1/2)
The learning rate of the generator is then set as the inverse:
(5Gen —1- 5Disc
This allows each network to catch up to the other network when it is performing worse. The same
principles are then used to balance the different losses within the generator and discriminator, which

can be found in Algorithm [I] This balancing act allows the part of the network performing more
poorly to be emphasized in the training regimen, resulting in more balanced and stable training.

2.3 Network Architecture

In principle, any form of AE network can be used in GAIA. In the experiments shown in this paper,
we used a modified version of network architecture advocated by Huang et al.[[2018]], which is
comprised of a style and content AE using residual convolutional layers. Each layer of the decoder

Zkept at 20 for our networks
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Figure 3: Attribute vectors added to Z representation of different images from the CELEBA-HQ
dataset.

uses half as many filters as the encoder, and a linear latent layer is used in the encoder network but not
the decoder network. The final number of latent neurons for the style and content networks are both
512 in the 128 x 128 pixel model shown here. A Python/Tensorflow implementation of this network
architecture is linked in the Conclusions section, and more details about the network architecture

used are located in [Huang et al.[[2018].

2.4 Feature manipulation

We find that, like several other generative models, high-level features correspond to linear vectors in
GAIA’s latent space. High level feature representations are typically determined using the means
of Z representations of images containing features (e.g. [Radford et al.|2015} [Larsen et al.|2015)}
|[Kingma and Dhariwal|2018)). The mean of the latent representations of the faces in the dataset
(here CELEBA-HQ) containing an attribute (Zf.q:) and not containing that attribute (Z,,, feqt) are
subtracted (Zfeat — Znofeat) to acquire a high level feature vector. The feature vector is then added
to, or subtracted from, the latent representation of individual faces (Z;), which is passed through the
decoder of the generator, producing an image containing that high-level feature. We find, however,
that these features are often tangled together in the CELEBA-HQ dataset. For example, adding a
latent vector to make images look older biases the image toward male, and making the image look
more young biased the image toward female. This likely happens because the ratio of young males to
older males is 0.28:1, whereas the ratio of young females to older females is much greater at 8.49:1
in the CELEBA-HQ dataset. To overcome this, we use an ordinary least-squares regression trained
to predict Z representations from feature attributes and use the coefficients of the model as feature
vectors. We find that these features are less intertwined than subtracting means alone, which can be
seen in Figure 4] where attribute vectors alone are passed through the decoder network.

2.5 Related work

This work builds primarily upon the GAN and AE. We used the AE as a discriminator motivated
by Berthelot et al.|[2017]], and an AE as a generator motivated by |Larsen et al.|[2015]. As noted
above, a number of other adversarial network architectures for inference have been designed in the
past several years. We compare our inference method to other GAN based methods in Figure [3
Similar motivations for better bidirectional inference-based methods have also been explored using
flow-based generative models [Kingma and Dhariwall, 2018, [Dinh et all,2014]], which do not rely on




Figure 4: Attribute vectors passed through the decode of the network. Attributes to the left are found
by subtracting means. Attributes to the right are found using ordinary least-squares regression. The
attribute vectors to the right are more variable. Zoom-in to see labels.

A VAE-GAN (64?) B AVB (64?) C BEGAN (1282%) D ALI (64?) E AGE (64%) F GAIA (1282 ours)

Figure 5: We compare the output of our generator to other inference and autoencoding based
algorithms with adversarial loss. Input images (X), and network reconstruction images (G (X)) are

shown side by side, with inputs on the left. (A)[Larsen et al.|[2015] (B) Mescheder et al| [2017] (C)
Berthelot et al.|[2017] (D) Dumoulin et al. [2016]] (E) Ulyanov et al.|[2017] F Our method.

adversarial loss. Due to their exact latent-variable inference, these architectures may also provide
a useful direction for developing generative models to explore latent-spaces of data for generating
datasets for psychophysical experiments.

3 Conclusion

We propose a novel architecture of GAN in which both the generator and discriminator are AEs. In
this architecture, a pixel-wise loss can be passed across the discriminator producing autoencoded
images without blurry reconstructions. Further, using the adversarial loss of the GAN, we train the
generator’s AE explicitly on interpolations between samples projected into latent space, promoting a
convex latent space representation. This method more explicitly lends itself to interpolations between
complex signals using a neural network latent space, while still respecting the high-dimensional
structure of the input data.

The proposed architecture still leaves much to be accomplished, and modifications of this architecture
may prove to be more useful, for example utilizing different encoder strategies such as progressively
growing layers [Karras et al., 2017], interpolating across the entire minibatch rather than two-point
interpolations, or finding other methods to train more explicitly on a convex space using adversarial




loss. Further explorations are also needed to understand how interpolative sampling effects the
structure of the latent space of GAIA.

Our network architecture furthers generative modeling by providing a novel solution to maintaining
pixel-wise reconstruction over an adversarial architecture. Further, we take a step in the direction of
convex latent space representations in a generative context. This architecture should prove useful
both for current behavioral scientists interested in sampling from smooth and plausible stimuli spaces
(e.g. Zuidema et al.2018]), as well as providing motivation for future solutions to bridging the gap
between data and the generative models used capture it.

Our network was trained using Tensorflow, and our full model, code, and high resolution images
are available on GitHub. Videos of a trained network interpolating between real images and adding
feature vectors are available at|the blog post| associated with this paper.
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Algorithm 1 Training the GAIA Model

1: OGen,Opisc < initialize network parameters
2: repeat

b

25:

X < random mini-batch from dataset
# pass through network

7 GEnc(X)

Zinterp < interpolate(Z)
Xgen < GDeC(Z)

)ginterp <~ GDec(ZinteTp)
X « D(X)

)ginterp <~ D(Xinterp)
Xgen — D(Xgen)

# compute losses

Lx ||X - X||1~

LXyen ¢ [I1X = Xgenlly

[':Xi'nterp — ||Xinte7‘p - iTLtET‘pH]_

Laistance +— patrwisedistance(X, Zgen)

# balance losses

dpisc + sigmoid(Lx — mean(Lx,.,, LX,niery))

6Gen —1- 6Disc

Waeniner, < S19moid(Lx,,,.,, — LXyen)

WGE”QG” —1- WGE”inteTp

WDiSCfake — szgmmd(mefln(‘c){gmz EXinterp) v —Lx)
# update parameters according to gradients

+
OGen _Af/’cen (EX(

gen

gen

: WGengen + ['Xinte,‘p . WGetheTp + ‘Cdistance * Oé) : 5Disc
+
Opisc < —ADop,..(Lx —mean(Lx,,,, LxXpiery) * Whiscsare) = 0Gen

26: until deadline
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