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Expectation-driven sensory adaptations 
support enhanced acuity during categorical 
perception
 

Tim Sainburg    1,2,10  , Trevor S. McPherson3,10, Ezequiel M. Arneodo    1,4, 
Srihita Rudraraju1, Michael Turvey1, Bradley H. Theilman3, 
Pablo Tostado Marcos5,6,7, Marvin Thielk    3 & Timothy Q. Gentner    1,3,8,9 

Expectations can influence perception in seemingly contradictory ways, 
either by directing attention to expected stimuli and enhancing perceptual 
acuity or by stabilizing perception and diminishing acuity within expected 
stimulus categories. The neural mechanisms supporting these dual roles of 
expectation are not well understood. Here, we trained European starlings to 
classify ambiguous song syllables in both expected and unexpected acoustic 
contexts. We show that birds employ probabilistic, Bayesian integration to 
classify syllables, leveraging their expectations to stabilize their perceptual 
behavior. However, auditory sensory neural populations do not reflect this 
integration. Instead, expectation enhances the acuity of auditory sensory 
neurons in high-probability regions of the stimulus space. This modulation 
diverges from patterns typically observed in motor areas, where Bayesian 
integration of sensory inputs and expectations predominates. Our results 
suggest that peripheral sensory systems use expectation to improve sensory 
representations and maintain high-fidelity representations of the world, 
allowing downstream circuits to flexibly integrate this information with 
expectations to drive behavior.

Categorical perception groups smoothly varying signals into discrete 
classes, affording generalization at the expense of acuity. In many 
settings, categorical perception is driven by expectation. For exam-
ple, in speech, as contexts change, perception is biased toward likely 
sounds, words and phrases1–3, reflecting a shift in prior expectations. 
This warping of perception toward expected categories is called the 
’perceptual magnet effect’ (refs. 4,5) and can be formally described 
as a process of Bayesian inference over acoustic distributions3,6–9. 

Under this framework, an optimal perceiver resolves sensory ambi-
guity by integrating noisy or imperfect sensory information with 
information about their prior expectations in a particular context. 
By contrast, prior expectations also play a pivotal role in enhancing 
sensory acuity by refocusing attention toward expected regions of 
stimulus space10–12; this ability of priors to bias our sensory systems 
enables more accurate discrimination of closely related signals13–15. In 
the domain of language, this phenomenon is exemplified by listeners’ 
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These three hypotheses can be restated in the language of Bayes’ 
rule. Noisy measurements of physical signals received by sensory 
systems represent the likelihood of a particular stimulus. The likeli-
hood is then integrated with prior expectations to form a posterior 
probability on which decisions are made (Fig. 1a). In the ‘feedforward 
probabilistic integration’ account, sensory systems represent only the 
likelihood and prior probabilities and the posterior distribution are 
not reflected in the sensory brain (Fig. 1b). By contrast, the ‘sensory 
probabilistic integration’ account predicts that sensory populations 
will reflect the Bayesian integration of prior and likelihood (Fig. 1c). 
Finally, in the ‘attention and active sampling’ account, expectations 
sharpen the stimulus likelihood without directly integrating the prior 
probability distribution (Fig. 1d).

Here, we analyze the activity patterns of sensory neuron popula-
tions in an auditory perceptual decision-making task to discern which 
computational model (feedforward probabilistic integration, sen-
sory probabilistic integration or attention and active sampling) most 
accurately explains neural processing in sensory systems. Songbirds 
provide an important opportunity to study mechanisms of categori-
cal vocal perception in neurobiological detail, as they perceive some 
elements of song categorically2,42 and those elements are biased by 
expectation43. We developed methods to explicitly impose probabil-
istic predictive information in a sequence of birdsong syllables and 
trained European starlings, a songbird with complex vocal repertoires, 
to classify smoothly varying syllables while controlling sequential 
predictive song structure. To begin, we show that categorical per-
ception of vocal elements is explained well by Bayesian probabilistic 
integration and that sensory neural responses capture the perceptual 
uncertainty (that is, the likelihood) of a Bayesian model representing 
the birds’ behavior. We observe that sensory neural responses are 
directly modulated by the predictive structure of vocal sequences, 
thereby ruling out the feedforward probabilistic integration hypoth-
esis. These response biases do not align, however, with a Bayesian 
integration of prior and likelihood (that is, the posterior) as predicted 
by the sensory probabilistic integration hypothesis. Instead, we find 
that the bias is consistent with dynamic changes in sensory acuity (that 

ability to fine-tune speech recognition based on the characteristics of 
the speaker’s voice16. It remains unknown how these dual contrasting 
functions of prior expectations (generalization underlying catego-
rization and sharpened sensory acuity) are implemented neurally. 
Specifically, the extent to which early sensory representations are 
influenced by prior expectation remains unclear. This ambiguity is 
highlighted in speech sound perception, which can manifest as either 
categorical or continuous depending upon the specific task at hand17,18. 
The task-dependent nature of perception fuels ongoing debates about 
the inherent nature of categorical perception: whether it is an intrinsic 
aspect of the sensory systems responsible for perception or a product 
of downstream decision-making processes19–22.

One possibility is that sensory codes are not impacted by 
expectation. Most empirical evidence for probabilistic integration 
derives from work on regions of the brain associated with motor and  
decision making23–28 and suggests that sensory populations encode a 
likelihood distribution29 integrated with expectation by downstream 
circuits. Alternatively, expectation and context could be integrated 
in sensory systems themselves, which then are used as a substrate 
for decision making; such modulation could occur via feedback  
loops with higher-order systems (for example, decision making and 
multisensory integration30) or through local network dynamics21,31–33. 
Both theoretical work19,21,31,34 and recent brain-wide analyses22,35 raise 
the possibility that even early sensory brain regions engage in prob-
abilistic integration of information about sensation and expecta-
tion. However, it is also possible that expectation impacts sensory 
codes but does so in a manner that is inconsistent with classical  
Bayesian integration. Instead, sensory modulation may be related 
to the active role that prior expectations play in shaping our  
interaction with the environment. For example, prior expectations 
drive attention and active sensing36,37, which modulates sensory 
encoding11,15,38,39 and improves sensory acuity12–14,40,41; these findings 
suggest that expectation may flexibly focus neural resources on regions 
of sensory space where signals are expected, thus improving percep-
tual acuity rather than pulling percepts toward expected categorical 
representations.
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Fig. 1 | Models of expectation-driven sensory modulation. a, Bayesian models 
of perception predict that physical stimuli, s, received by sensory systems are 
corrupted by noise in measurement, m, representing the likelihood p(m∣s), which 
is integrated with prior expectations, p(s), to form a posterior probability, p(s∣m), 
on which decisions are made21. b, In a modular implementation of Bayesian 
integration, sensory populations represent only the likelihood (denoted by 

shading). c, In a distributed implementation, sensory systems may reflect all 
components of the Bayesian integration model. d, Alternatively, attention 
and active sampling may modulate how sensory systems measure real-world 
stimuli (dashed red arrow in a), altering the likelihood (acuity) on the basis of 
expectation, without reflecting the posterior.
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is, the likelihood of the Bayesian model) in predicted regions of acoustic 
space. As a consequence, an unbiased representation of the sensory 
signal is left available for flexible use in behavior.

Results
Categorical decision making is modulated by expectation
Sensory neuroscience and psychophysics have long, productive histo-
ries founded on the idea of relating parametric change in a stimulus to 
quantifiable changes in both neural activity44 and behavior45. Implicit in 
this approach is the strong assumption that sensory inputs can be dis-
cretized into stimulus events parametrically varying along one or two 
continuous dimensions. This approach is ideally suited to investigate 
how simple, nonnatural and easily controllable signals are perceived 
behaviorally or encoded neurally but neglects the natural history of 
sensory systems, which are adapted to complex ethologically relevant 
signals like birdsong46,47. Attempts to apply the same kind of parametric 
stimulus control to natural stimuli are rare because natural signals tend 
to vary along multiple dimensions simultaneously48,49.

To address this challenge, we developed a behavioral paradigm to 
control context-dependent categorical perception in a natural stimulus 
space by synthesizing smoothly varying starling song syllables using a 
neural network. We captured the complex spectrotemporal statistics 
of song acoustics using a deep convolutional variational autoencoder 
(VAE; Fig. 2a)50 trained on a large library of conspecific song. From the 
latent space of this network, we synthesized acoustic continua (N = 9), 
each comprising 128 synthetic syllables (morphs) that smoothly vary 
between two acoustically distinct syllable endpoints. We trained star-
lings using a two-alternative choice category learning task to classify 
the naturalistic syllable morphs that lie along these continua (Fig. 2b). 
We divided each continuum at the midpoint and reinforced one half 
with food for pecks into the left response port and the other half for 

pecks into the right response port (Fig. 2c, bottom). We trained birds 
(n = 20) on the syllable classification task to obtain psychometric func-
tions for each syllable continuum (Fig. 2d) and then introduced cue 
syllables preceding the target (to-be-classified) syllable. Each cue 
syllable provided predictive information about the likely response 
category of the target syllable (Fig. 2e). All subjects learned the task 
to at least 75% accuracy (Supplementary Table 1), performing a total 
of 4.8 million behavioral trials.

We fit a psychometric model (Fig. 3a) to each subject’s classifi-
cation behavior for each syllable continuum (Fig. 3b) and then used 
the parameters of the fit psychometric model to understand how the 
cue affected behavior. Under the Bayesian integration hypothesis 
(Fig. 2f–h), categorical perceptual decision making (that is, syllable 
classification) is modulated by integrating the likelihood imposed 
by the stimulus (that is, the target syllable) with the prior imposed by 
its sequential context (that is, the preceding cue syllable). As a result, 
the decision boundary (Fig. 3a, inflection point) shifts in the direction 
predicted by the cue (Fig. 3c, top). We also examined whether informa-
tion from the cue and target syllables are treated independently, in a 
non-Bayesian manner, as evidenced by an overall shift in the probabil-
ity of a left or right response but not a shift in the decision boundary 
(Fig. 3c, bottom).

Across each syllable continuum and for each bird, we observed 
robust shifts in the decision boundary (Fig. 3b,d–f; linear mixed 
effects; psychometric inflection ~ cue probability + (1∣subject) + (cue 
probability∣subject); cue probability: β = −11.12, s.e.m. = 1.158, 
z = −9.6, P < 0.001), consistent with Bayesian integration underlying 
context-dependent categorical perception. To examine this shift more 
closely, we fit the Bayesian model (in particular, the likelihood) to 
each bird’s behavioral data in uncued trials (for each continuum) and 
predicted the inflection point shift given each cue probability. The red 
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Fig. 2 | Context-dependent categorical perception paradigm. a, Syllable 
morphs are generated as interpolated projections between two song syllables in 
the latent space of a neural network. b, Example syllables from the nine syllable 
continua (rows) used for behavioral training. The reinforced category is shown 
on the top, and the endpoint syllables are labeled on the left and right sides.  

c, Operant apparatus used for this experiment. Green and orange response ports 
correspond to the syllable classes in b. d, A psychometric curve depicting syllable 
classification over one continuum. e, Two example context cue syllables precede 
the target syllables, holding predictive information about the class to which each 
belongs. Cl, context left; Cr, context right; Rl, reinforce left; Rr, reinforce right.
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Fig. 3 | Decision-making behavior reflects Bayesian integration. a, An example 
psychometric fit with parameters. b, Psychometric fits for cued conditions for 
each of the subjects. c, Top, an example of the context-dependent category 
shift as a function of the cue, as predicted by the Bayesian model. c, Bottom, an 
example of an alternative hypothesis, in which decisions are made either using 
the cue or the categorical stimuli, without integration of the two sources of 
information results in no category boundary shift. The corresponding lines in 
the connected horizontal and vertical boxes indicate the shift in the inflection 
point (vertical lines) as well as the midpoint between mid and maximum in the 
psychometric function (horizontal lines). Colors indicate the cue probabilities 
given in Fig. 2. d, The results across birds and morphs indicate that both 
strategies from c are present in behavior. e, Cue shift between left and right 
cues for each morph and bird at P = 0.875 and 0.75. f, The categorical boundary 
(inflection point) shifts as a function of the strength of the cue (Pearson’s 
correlation; n = 1,050 over each bird, morph or cue). RL, reinforce left. The 

Bayesian model predicts a similar shift from the uncued data (red line). Points 
correspond to each morph for each bird, and triangles correspond to each 
bird, averaged over morphs. Error bars represent s.e.m. for each cue. g, Morphs 
(interpolations) vary on the slope of the fit psychometric function, indicating 
variation in uncertainty in decision making by morph (n = 1,050). For box plots, 
the center line represents the median, the bounds of the box span from the 25th 
to the 75th percentile (the interquartile range), and the whiskers extend to the 
furthest data points within 1.5 times the interquartile range. h, The Bayesian 
model predicts a greater shift in categorical boundary as a function of the 
uncertainty of the categorical stimulus (σ of the likelihood and slope of the 
psychometric model). PR, peck right. i, As predicted by the Bayesian model, the 
shift in the categorical boundary increases as a function of uncertainty (Pearson’s 
correlation; n = 700 over each bird or morph). Points correspond to the shift in 
inflection between left and right cues (averaged across cue strength conditions) 
for each morph for each bird.
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dashed line in Fig. 3f depicts a linear regression showing the close cor-
respondence between the observed shift in inflection point and that 
predicted by the Bayesian model. In addition, we observed an overall 
shift in decision probability (Fig. 3d), suggesting that, in a subset of 
trials, subjects responded independently to the cue or the target syl-
lable alone, which aligns with previous findings that animals alternate 
between decision-making strategies from trial to trial51.

We observed substantial variation in the slope of the psychometric 
functions fit to each bird’s behavior. Some individuals showed a much 
sharper categorical boundary than others (for example, B1432 versus 
B1110 in Fig. 3b), and the mean slope (averaged across individuals) also 
varied between syllable continua (Fig. 3g). The slope of the psycho-
metric curve reflects uncertainty in the Bayesian model. Under greater 
uncertainty about the target syllable, the Bayesian model predicts that 
integration with the cue stimulus will result in a greater shift in categori-
cal perception (that is, the inflection point; Fig. 3h ref. 52). Consistent 
with this, we observed a smaller inflection point shift in the direction of 
the cue as the slope of the psychometric curve steepened (Fig. 3i; linear 
mixed effects; inflection shift ~ psychometric slope + (1∣subject) + (psy-
chometric slope∣subject); cue probability: β = −0.401, s.e.m. = 0.099, 
z = −4.03, P < 0.001), which again matches the quantitative prediction 
of the model (Fig. 3i, red dashed line).

Both the likelihood of a given stimulus and its prior probability 
were reflected in the response times of birds. Response times were 
longer in incorrect trials than in correct trials (Extended Data Fig. 1a; 
linear mixed effects; response time ~ correct response + (1∣subject); 
correct response: β = −0.298, s.e.m. < 0.001, z = −339.448, P < 0.001), 
suggesting that challenging decisions take longer to make. When look-
ing only at trials where the bird was correct and controlling for side bias 
(Methods), we found that response times decreased proportionally to 
the prior probability imposed by the cue (Extended Data Fig. 1b) and 
that response times near the center of the morph increased following 
the bird’s psychometric slopes for each morph (that is, the likelihood; 
Extended Data Fig. 1c,d).

Sensory neural responses reflect behavioral likelihood
These behavioral results indicate that, in our task, birds are probabilisti-
cally integrating expectations with sensory experiences to categorize 
song syllables. To investigate whether sensory forebrain neural popu-
lations reflect Bayesian integration, we recorded extracellular neural 
spiking activity using one to two (unilaterally or bilaterally) implanted 
32–64-channel 1–8 shank silicon electrode arrays in freely behaving 
subjects (N = 10) while they completed trials on the syllable categoriza-
tion task and passively listened to the same stimuli (during both sleep-
ing and waking states). We targeted electrode arrays broadly across 
the auditory forebrain, including the primary auditory region field 
L (Extended Data Fig. 2) and secondary regions caudal mesopallium, 
caudomedial nidopallium and medial caudolateral nidopallium (NCL). 
We recorded from a total of 13,854 putative single neurons (Spike sort-
ing and merging over long-term chronic recordings).

We analyzed spike train data as spike vectors over the different 
syllable continua by convolving the time histogram (bin width = 10 ms) 
of the stimulus-aligned spike train for each trial with a Gaussian ker-
nel (σ = 25 ms; Fig. 4a–e). Fig. 4e,f shows sample spike trains and 
trial-averaged spike vectors for a sample unit for each syllable con-
tinuum. From the trial-averaged spike vectors, we computed a cosine 
similarity matrix between spike vectors for each syllable on each con-
tinuum (Fig. 4i) from which we then computed a neurometric function 
(Methods and Fig. 4j). We also used the cosine similarity matrix to 
compute a metric for each unit’s task relevance (Fig. 4k,l and Assessing 
task relevance for units), reflecting the similarity of the unit’s response 
within versus between syllable categories. Importantly, this analysis is 
not meant to suggest that these neurons reflect learned categories, only 
that they show response variance over the task-relevant stimulus space. 
Of the 13,854 units recorded, 7,994 had task-relevant responses to the 

syllable continua (Subsetting task-relevant units). On average, the 
spike vector responses for these task-relevant units changed smoothly 
across the syllable continua, but the degree of this smoothness varied 
(Fig. 4m,n).

To assess whether neural responses reflected behavior, we com-
pared the slope of the neurometric function to the slope of the psycho-
metric function for each bird and syllable continuum. The neurometric 
slopes were predicted well by the psychometric function (Fig. 4o,p; 
linear mixed effects; log (neurometric slope) ~ log (psychometric 
slope) + (1∣unit) + (log (psychometric slope)∣unit); log (psychometric 
slope): β = 0.172, s.e.m. < 0.005, z = −37.006, P < 0.001). Because, in the 
Bayesian decision-making model, the slope of the psychometric func-
tion is modulated by the likelihood, that is, stimulus uncertainty, it fol-
lows that these neural responses carry information about the stimulus 
uncertainty. Additionally, we assessed whether individual bird-level 
variation in psychometric slopes was reflected in the unit neurometrics 
and found that it was not (Methods), indicating a possible downstream 
role for estimates of stimulus uncertainty in decision making.

Expectation suppresses sensory spike rate
Prior work has established that expectation modulates neural activ-
ity in sensory and decision-making brain regions, with activity in 
decision-making regions increasing with predictability and activity 
in sensory regions decreasing11. The reduction in activity in sensory 
areas during predictable stimuli may reflect the dampened coding of 
task-irrelevant features, which could be useful for improving acuity12. 
To assess whether cue syllables modulate neural responses to target 
syllables, we quantified how much the overall spike rate in each unit 
changed as a function of the predictive cue syllable in trials in which 
birds behaviorally responded to stimuli. The presence of a cue syllable 
significantly suppressed the spike rate evoked by the target syllable 
when controlling for spike rate variability across units (Fig. 5a; ANOVA 
for linear mixed-effects model comparison: χ2(4, N = 857,301) = 15,196, 
P < 1 × 10−5; see Methods for details). This suppression was consistent 
across the motif continuum, stronger in active trials than in passive 
playbacks (Fig. 5b), and was most prominent early and continued 
throughout much of the target stimulus playback (Fig. 5c). Moreover, 
the magnitude of the cue-dependent suppression was consistent within 
each cue condition and persisted throughout stimulus playback. In 
passive playback trials, any cue-dependent effects quickly diminished 
(Fig. 5d).

Because cue syllables are differentially informative (that is, they 
establish different priors) for upcoming target syllables, we reasoned 
that the magnitude of cue-specific response suppression might covary 
with the strength of the predictive information. We therefore measured 
the impact of the cue’s predictive probability on spike rates while 
controlling for differences in each unit’s response between syllable 
continua (Supplementary Fig. 13). We found that, as the predictive 
strength of the cue syllable increased, the associated spike rates 
decreased (Fig. 5e; ANOVA for linear mixed-effects model compari-
son: χ2(1, N = 857,301) = 399, P < 1 × 10−5; see Methods for details). This 
effect was abolished during passive playback (Fig. 5f) and when cue 
labels were shuffled (Supplementary Fig. 13). In sum, these results 
are consistent with previous observations that signal predictability 
decreases responses to stimuli (that is, expectation suppression11), 
which is believed to reflect a dampening of task-irrelevant noise12.

Expectation drives sensory likelihood modulation
As Fig. 5 shows, prior expectations modulate sensory neural responses. 
This rules out the feedforward probabilistic integration hypothesis that 
sensory populations representing the stimulus are unmodulated by 
expectation (Fig. 1b). The remaining two hypotheses make opposing 
predictions about how sensory populations should be modulated by 
prior expectations. The attention and active sampling hypothesis pre-
dicts that sensory representations become increasingly discriminable 
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computed as the spike train from d convolved with a Gaussian kernel. f, The 
average spike vector for the unit in c,d for a single morph (A → E). g, Sample 
spike trains for one unit across nine morphs. Interp., interpolation. h, Spike 
vector representations of the spike trains from g. i, Cosine similarity matrices 
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slope (log transformed and scaled by the psychometric range) for each subject 
and morph. Each subject is shown with a unique color and regression line. 
Points are means across subjects or morphs, and error bars correspond to the 
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in high-probability regions of stimulus space (Fig. 6b,d). In our model 
of attention and active sampling (Extended Data Fig. 3), we assume 
that an increase in sensory acuity in one region of sensory space (here, 
the cued section of the syllable continuum) comes at the expense of 
acuity in other sensory dimensions (that is, acoustic features irrel-
evant to our categorization task; see Methods for details)53,54. Under 
this model, if neural responses reflect the stimulus likelihood, their 
similarity should decrease as a function of predictive cue strength 
(Fig. 6f,i), both because signals become more discriminable along the 
task-relevant dimension (here, the syllable continuum) and because 
representational noise along task-irrelevant dimensions increases. 
Alternatively, Bayesian integration mirrors an effect in categorical 
phoneme perception called the perceptual magnet effect4 in which 
speech perception is warped around categorical boundaries to reduce 
discriminability of within-category sounds (Fig. 6c,e). In the Bayesian 
model, this perceptual warping results from the integration of prior dis-
tributional information with a noisy representation of the acoustic sig-
nal, yielding a shift in the posterior toward higher-probability regions of 
acoustic space6 (Fig. 6c). As a result, similarity within high-probability 
regions of stimulus space increases, compressing within-category rep-
resentations together (that is, perceptual magnetism). In the context 
of our task, increasing predictive probability toward one side of the 
syllable continuum (that is, in the context of a predictive cue) leads to 
two outcomes: the within-category similarity of the posterior on the 
predicted side of the continuum will increase and the within-category 

similarity of the low-probability side of the continuum will decrease 
(Fig. 6g). Under this model, if neural responses reflect this posterior 
distribution, their similarity should also increase as a function of pre-
dictive cue strength (Fig. 6f,i).

To determine which model best aligns with our neural data, we 
employed two methodologies. First, we directly compared similarity 
of neural responses to syllables across the different continua as a func-
tion of cue condition. Second, we used a decoder model to estimate the 
accuracy of stimulus and stimulus class predictions from neural data 
in different cue conditions.

Comparing the trial-to-trial cosine similarity of the spike vector 
response across syllable continua revealed that, in the presence of a 
predictive cue, the within-category similarity was higher in the nonpre-
dicted (cue-invalid) class than in the predicted (cue-valid) class (Fig. 6h; 
linear mixed effects, Methods; β = 0.009, s.e.m. < 0.001, P < 0.001). 
Moreover, the within-category similarity across units and continua 
decreased significantly as a function of the probability of the cue 
class (Fig. 6j; linear mixed effects, Methods; β = −0.01, s.e.m. < 0.001, 
P < 0.001). This effect was abolished when cue labels were shuffled 
(Supplementary Fig. 1), suggesting that perceptual acuity is selec-
tively sharpened over predicted regions of acoustic space, which likely 
decreases the overall representational noise. To test this directly, we 
compared the variance in spike rates as a function of cue validity. On 
average, spike rate variance in the cue-valid condition was slightly but 
significantly lower than that in the cue-invalid condition (s.d. ~ cue 
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condition + (1∣stimulus:unit); β = −0.515 Hz, P < 0.001), consistent with 
the idea that valid cues reduce representation noise.

We next asked whether prediction accuracy increases and whether 
stimulus predictions are shifted when stimuli are expected. To this 
end, for each morph and bird, we trained a logistic regression on 
principal-component analysis (PCA) projections of population activ-
ity fit to passive playbacks and uncued behavioral trials (Fig. 6k). We 
then applied the PCA projection and predicted morph positions of 
the held-out cued trials. Each decoder model performed well above 
chance, validating that stimulus identity can be decoded from sensory 
populations (Fig. 6l,m).

Both models make dichotomous predictions about the decoded 
responses. The attention and active sampling model predicts that 
the decoder accuracy of cue-valid (for example, cue left, morph left) 
trials will be higher than that of cue-invalid (for example, cue left, 
morph right) trials (Fig. 6n). The Bayesian integration model predicts 
instead that decoder predictions will shift in the direction of the cue 
(Fig. 6q). We analyzed our population decoder results on the basis of 
these predictions and found that decoding accuracy improves for 
the validly cued stimulus (Fig. 6p; linear mixed effects; correct ~ cue 
valid + (1∣population) + (cue valid∣population); cue valid: β = 0.007, 
s.e.m. = 0.002, z = −3.78, P < 0.001) and that the inflection point fit to 
model predictions did not shift toward the cue (Fig. 6q; z-test between 
psychometric model fits; z = −0.0555, P = 0.478). Additionally, we con-
firmed that the neurometric curve does not shift over single units by 
computing the neurometric curve directly on the response similarity 
matrices, as in our initial comparisons between neurometric and psy-
chometric curves (Supplementary Fig. 2). We measured the change in 
the inflection point between cue-valid and cue-invalid trials. Across 
units, we did not find a significant shift in inflection point between 
high-probability and low-probability cues (linear mixed effects; neu-
rometric shift ~ 1 + (1∣unit); β = 0.13, s.e.m. = 0.82, z = 1.64, P = 0.10). 
These results support the sensory modulation model over the Bayes-
ian integration model, demonstrating that sensory acuity is enhanced 
at the population level and that sensory representations do not shift 
toward expected stimulus classes.

Receptive field remapping underlies sensory modulation
The preceding results show that expectation modulates sensory 
responses and supports a model of sensory modulation in which 
expectation drives changes in sensory acuity. We observed that, on 
average, spike rates are suppressed as expectation increases (Fig. 5e). 
One possible mechanism for the spike rate reduction is that expectation 

modulates the gain of an otherwise static stimulus–response relation-
ship (that is, receptive field). Alternatively, expectations may drive a 
more dynamic remapping of receptive fields. To differentiate between 
these hypotheses, we fit a maximum noise entropy (MNE) composite 
receptive field model55 to stimulus-evoked single-neuron activity in 
a subset of trials in which the cue provided a valid prediction of the 
upcoming target syllable. If the cue has no effect on the receptive field, 
then model performance (correlation between model-predicted and 
empirical response) should be similar for the same target syllable pre-
sented on held-out cue-valid and cue-invalid trials (Extended Data 
Fig. 4a,b). Across all cue strengths, however, the MNE receptive field 
models provided significantly better (more accurate) predictions of 
responses to target syllables in cue-valid trials than in cue-invalid tri-
als (Extended Data Fig. 4c; linear mixed effects, trial correlation ~ cue 
validity + (1∣unit) + (1∣day); β = 0.015, s.e.m. < 0.001, z = 41.074, 
P < 0.001). Thus, contextual cues rapidly reorganize receptive fields 
to better encode predicted stimuli. This reorganization is produced by 
cue-dependent changes in both the gain and stimulus feature tuning 
of linear and nonlinear components of the receptive fields (Methods).

To directly link changes in receptive fields to sensory likelihood 
modulation, we reproduced the similarity analysis from Fig. 6h,j with 
the output of the MNE encoder model. We fit MNE receptive fields to 
target syllables for each cue condition separately and passed all sylla-
bles through the model to generate predicted spiking probabilities for 
the duration of each stimulus. Cue-driven information is then encoded 
in the variability of the neural response to a given stimulus across cue 
conditions and hence will produce distinct spiking probability vectors 
for each cue condition. We computed the similarity of the spiking prob-
ability vectors across the different continua as a function of cued direc-
tion, taking the difference of the resulting similarity matrices derived 
for left and right cue conditions, as we did for the empirical responses. 
Paralleling our empirical results in Fig. 6h–j, we see that within-category 
similarity is higher in the nonpredicted (cue-invalid) class than in the 
predicted (cue-valid) class (Supplementary Fig. 3a; linear mixed effects, 
cosine similarityempirical − shuffled; cue left − cue right ~ validity + (1∣unit) + (1∣day): 
β = −0.013, s.e.m. < 0.001, z = −154.841, P < 0.001; see ‘Maximum 
noise entropy receptive fields’) and that within-category similarity 
decreases as a function of the probability of the cue class (Supple-
mentary Fig. 4; linear mixed effects, cosine similarityempirical; cued − no cue ~  
validity + (1∣unit) + (1∣day): β = −0.07, s.e.m. = 0.001, z = −12.970, 
P < 0.001; see ‘Maximum noise entropy receptive fields’). These results 
further support the notion that neuronal responses are dynamically 
restructured to optimize the differentiation of expected stimuli.
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subjects and morphs with bootstrapped 95% confidence intervals (n = 37,993 
trials). c, Mean z-score normalized slopes from psychometric functions fit 
to responses across morph continua under the different cue conditions, 
averaged over subjects and morphs with bootstrapped 95% confidence intervals 
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Expectation improves perceptual acuity
The preceding physiological evidence supports a model of 
expectation-dependent sensory modulation in which sensory rep-
resentations are flexibly reorganized to improve acuity in expected 
regions of stimulus space (that is, the attention and active sampling 
model). These neural changes should also lead to improved behavioral 
acuity in expected regions of stimulus space. Testing this prediction 
in the original behavioral task is not possible, however, because the 
cued portion of the stimulus space is tied to the response class (peck 
left or peck right), and therefore changes in perceptual acuity cannot 
be dissociated from the behavioral decision.

To directly test whether expectation modulates sensory acuity, we 
designed a modified behavioral task in which cues predict individual 
syllable continua rather than a response class (Fig. 7a). By presenting 
the same syllable continua under differing levels of expectation, we can 
assess how perceptual acuity is modulated by expectation.

In the modified task, we paired each of three syllable continua 
(A–E, B–F, C–G) with a cue syllable. Each cue preceded its paired syllable 
continuum with 80% probability (for example, p(morphAE∣cueAE) = 0.8) 
and the other two syllable continua with 10% probability (for exam-
ple, p(morphBF∣cueAE) = 0.1). These cued trials accounted for 80% of 
trials. On the remaining 20% of trials, we presented either an unin-
formative cue (for example, p(morphAE∣cueNI) = 0.33) or no cue 
(p(morphAE∣peck) = 0.033).

Given our physiological results, we predicted that, in trials where 
syllable continua are more expected, perceptual acuity would increase 
and the birds would perform better when discriminating the stimulus. 
We computed psychometric functions for each continuum and cue 
condition and took the slope of each as an estimate of perceptual 
sensitivity across the stimulus space (syllable continuum).

As predicted by our model and consistent with our physi-
ological results, sensitivity improved in the presence of predictive 
cues (Fig. 7c; permutation test controlling for subject and morph, 
Methods; r = 0.22, P < 0.001), coinciding with an improvement in 
behavioral accuracy (Fig. 7b; linear mixed effects; accuracy ~ cue 
probability + (1∣subject) + (cue probability∣subject); cue probability: 
β = 0.068, s.e.m. = 0.014, z(37,993) = 5.02, P < 0.001). These behavioral 
effects corroborate our observations of improved sensory acuity at 
the neural level.

Discussion
Expectation plays a varied, yet fundamental role in perception. It can 
facilitate generalization through probabilistic integration, and it can 
improve acuity through attention. How these diverse outcomes of 
expectation-driven categorization and acuity are balanced in the course 
of real-world perception has not been clear. Here, we find that early sen-
sory processing reflects prior information, thereby improving sensory 
acuity while relegating probabilistic integration of these expectations 
to downstream circuits involved in decision making and behavior.

To disambiguate models for how expectation might influence 
sensory representations, we trained songbirds on a categorical percep-
tual decision-making task and manipulated the predictive contextual 
information in sequences of vocal elements. Songbirds exploit this 
information, biasing the categorical perception of their vocalizations. 
A Bayesian model of perceptual decision making captures both qualita-
tive and quantitative aspects of this behavioral bias (Fig. 3), reflecting 
the integration of predictive contextual information with uncertainty 
over natural stimulus dimensions. This model is similar to that which 
has been proposed for human context-dependent categorical speech 
perception3,6. Neural recordings revealed that many sensory neuronal 
responses throughout the auditory forebrain are broadly responsive 
across the natural stimulus space dimensions in which our task was 
embedded, mirroring the animal’s perceptual behavior (Fig. 4). Syl-
lable sequence predictability influenced these sensory representa-
tions by suppressing spike rates and modulating syllable encoding 

and decoding (Figs. 5 and 6 and Extended Data Fig. 4). Contrary to the 
explicit predictions of the Bayesian model, these neural responses do 
not directly represent the integration of prior information in these 
sensory regions. Instead, the context-dependent modulation more 
closely reflects an increase in perceptual acuity in predicted regions 
of stimulus space (Fig. 6), facilitating an increase in behavioral perfor-
mance (Fig. 7). Our results indicate that the coordinated variability 
of sensory forebrain neuronal populations dynamically shifts in the 
face of predictions, facilitating optimal encoding along (anticipated) 
stimulus-relevant dimensions. This restructuring of stimulus–response 
mapping is suggestive of a top–down predictive model reshaping the 
stimulus likelihood within sensory regions in anticipation of upcom-
ing stimuli12. This conceptualization has the potential to explain how 
internal models can reduce spiking variance when predictions are 
valid and casts ‘noise’ when predictions are invalid as predictive error.

Current speech research aims to uncover neural systems involved 
in processing predictive information related to lexical and pre-lexical 
feedback3. Many have proposed that a Bayesian framework provides a 
mechanistic explanation for speech categorization and comprehension 
more broadly3,6,8. However, human studies have methodological limi-
tations, leaving gaps in our understanding of neural representations 
of speech category information and their modulation under various 
comprehension-related conditions. Our results support Bayesian 
integration as a mechanism for categorical perception but leave open 
the possibility that biases imposed through probabilistic integra-
tion, such as categorical perception, are at least in part the product 
of task-dependent decision making, rather than early sensory and 
perceptual processes. This is reminiscent of behavioral observations 
in speech, where the degree to which speech is categorically perceived 
is task dependent3. Our observations suggest a functional segregation 
of Bayesian integration processes that is adaptive for communication 
in the sense that it preserves a veridical sensory representation of 
the stimulus that can be used flexibly in the service of multiple task 
demands.

Although our findings suggest that sensory populations do not 
reflect Bayesian integration, it remains possible that some perceptual 
biases are encoded in sensory systems. In speech, some secondary sen-
sory populations have been found to exhibit categorical responses56. 
Some aspects of categorical speech perception also appear to be less 
task dependent. For example, native Japanese speakers often have 
trouble distinguishing between the English phonemes /r/ and /l/ (as in 
‘rake’ versus ‘lake’) because there is no distinction between /r/ and /l/ in 
Japanese4,5, a perceptual bias that can extend for years after exposure 
to a second language57. Reflections of prior expectations have been 
observed throughout the sensory hierarchy in mice22; it may be that the 
role of expectation in the brain differs along more dimensions than sen-
sory versus decision-making systems. For example, language-related 
sensory systems may adapt to phonetic categories during critical 
periods of language acquisition, imposing immutable biases to percep-
tion. However, our observations contextualize the broad qualitative 
differences observed between sensory and decision-making brain 
regions, where suppression in the sensory brain is linked to dampening 
noise in task-irrelevant dimensions12 and increased activity is associ-
ated with the integration of expectation and sensory experience11. Our 
results suggest that, even while animals perform Bayesian inference 
at the behavioral level, sensory populations reflect expectation in a 
manner wholly unrelated to Bayesian integration. Simultaneous and 
large-scale recordings across the perceptual and decision-making 
hierarchy will be crucial for understanding how expectation is used 
broadly across the brain. Studying these hierarchies remains a chal-
lenge in nonmodel systems such as the European starling (and more 
broadly, songbirds) in which neural substrates for motor control and 
cognition outside of song production are not well characterized. For 
instance, the lateral-most region of the NCL is a promising candidate 
for probabilistic integration in songbirds, paralleling the premotor and 
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cognitive functions of the primate frontal cortex. However, the role of 
the NCL has been primarily described in visual processing and multi-
sensory integration, with no evidence yet found in auditory cognition58, 
highlighting an important area for future research.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-025-01899-1.
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Methods
Ethical note
All procedures were approved by the Institutional Animal Care and Use 
Committee of the University of California (S05383).

Summary
Experiments consisted of a behavioral component and a chronic physi-
ology component. The experimental protocol for the behavioral com-
ponent was kept constant by using the same software and hardware 
in both conditions, with the addition of chronic electrophysiological 
recording in the physiology component.

Subjects
Behavioral data were collected from 20 wild-caught European starlings 
of unknown sex. Before beginning experimental training, subjects were 
housed in a large mixed-sex aviary. Of the 20 starlings used for behavior 
experiments, ten individuals were used for chronic physiology.

Datasets
Our final behavioral dataset was composed of 4.8 million behavioral 
trials from 20 birds. Our final chronic neural dataset was composed of 
402,797 behavioral trials, with 365,360 responses, a total of 1,594,257 
audio playbacks, occurring over 5,345 h (222 d) of recording, across 
ten birds.

Stimulus generation
Stimuli were syllables of European starling song synthesized from a VAE 
trained on syllables extracted from a library of European starling song59.

Training dataset. Syllables were segmented from the full songs 
of starlings with the dynamic thresholding approach outlined in  
ref. 60 and available in the vocalization segmentation Python package 
(https://github.com/timsainb/vocalization-segmentation). Syllables 
were zero-padded symmetrically at their beginning and end to be 1 s 
long. Spectrograms of each syllable were computed with 128 frequency 
bands spaced between 50 and 22,050 Hz and downsampled to 128 time 
bins (128 Hz), resulting in a 128 × 128 spectrogram of each syllable, 
used to train the VAE.

Neural network. The neural network architecture we used followed 
those in our AVGN jhk fmhtcg bn. We used a convolutional VAE archi-
tecture with a 16-dimensional latent space. The network was trained 
on batches of 32 syllables at a time. Artificial neurons used a leaky 
ReLu nonlinearity. The network was trained with the ADAM optimizer 
in TensorFlow.

Sampling and synthesis. Each syllable stimulus (used for cues and 
endpoints) was sampled from the original dataset (Supplementary 
Fig. 5) and passed through the VAE. The stimuli were chosen to be 
diverse, well reconstructed in the VAE and roughly equidistant both in 
spectrogram space (both input and reconstruction) as well as the latent 
space of the VAE. It is not expected that distances in spectral or neural 
network latent space would have a 1:1 relationship with an animal’s 
perception of similarity. Morph syllables were sampled from 126 evenly 
spaced points along the linear interpolation between the latent (16D) 
representations of a pair of endpoint syllables and passed through the 
decoder of the VAE, producing the final 128-syllable continuum includ-
ing the two endpoint syllables (Extended Data Fig. 6). Waveform stimuli 
were then generated from the spectrogram output of the decoder of 
the VAE using the Griffin–Lim algorithm. These waveforms were the 
stimuli used for playback to the birds.

Behavioral training paradigm
Birds were initially trained to differentiate between the two syllable 
endpoints for a single continuum. After several days of above chance 

accuracy with one pair of syllable endpoints, the number of endpoints 
was increased until the birds showed above accuracy classification of 
the endpoints of all nine continua. After learning the correct response 
for all endpoints, birds were transferred to the full stimulus set, which 
included all 128 syllables (linearly sampled and equally spaced in latent 
space) spanning each of the nine continua (1,152 syllables in total). After 
the birds were performing reliably above chance on each full syllable 
continuum for several days, we added cue syllables preceding the tar-
get syllables to provide context-dependent information at P = 0.125, 
P = 0.25, P = 0.5, P = 0.75 and P = 0.875.

Training parameters
Several behavioral parameters were used in behavioral training, given 
here for reproducibility. Trials were reinforced on a variable ratio 
schedule between two and four responses, manually set for each bird 
to maximize the number of trials each day without the loss of more 
than 10 g of weight from baseline when in the restricted feeding condi-
tion. Punishment was set at a 5-s lights-off period, during which new 
behavioral trials could not be initiated. A minimum of 1 s between trials, 
regardless of response, was imposed. Birds could not respond during 
stimulus playback. Birds were given a 5-s window to respond after stim-
ulus playback. Lighting conditions were set to match seasonal sunrise 
and sunset times in the experimental location (San Diego, California).

Cue stimulus
Like the morph syllables, the cue syllables are 1 s long, synthesized 
by reconstruction from the VAE. Behavioral trials were presented 
with one of six cue conditions: no cue P(L∣no cue) = 0.5 (NC), cue with 
no predictive information P(L∣cue) = 0.5 (CN), cue left at p = 0.875% 
P(L∣cue) = 0.875 (CL1), cue left at p = 0.75% P(L∣cue) = 0.75 (CL0), 
cue right at p = 0.875% P(L∣cue) = 0.125 (CR1), cue right at p = 0.75% 
P(L∣cue) = 0.25 (CR0). Sixteen percent of trials were presented in the 
no-cue condition (NC). Four percent of trials were presented with the 
uninformative cue condition (CN). The remaining 80% of trials were 
evenly split between the cue right and cue left conditions. Because 
the CN condition was sampled with a substantially lower probability 
than the other conditions, resulting in a low number of total trials in 
comparison to each other cue condition, it was not included in physi-
ological analyses. In passive physiology playback conditions, due to 
time constraints in playing back the full stimulus set of 128 interpola-
tion points for each of nine morphs and six cue conditions, we played 
back only the 87.5% predictive cue conditions in the AE and BF morphs.

Psychometric fit
To assess the shift in categorical perception, in each of the birds (n = 20), 
we fit a psychometric (four-parameter logistic) function both to the 
overall responses to stimuli in the left and right categories of the morph 
as well as to each individual morph. The fit psychometric across all 
morphs is given in Supplementary Fig. 6, that across all birds is given in 
Supplementary Fig. 7 and that broken out across all birds and morphs 
is given in Supplementary Fig. 8:

logistic(x) = maximum + minimum −maximum

1 + ( x
inflection

)
slope

.

Bayesian integration model
To formalize our hypothesis, when a stimulus varies upon a single 
dimension x, the perceived value of x as a function of the true value 
of x and contextual cue information can be described by Bayes’ rule:

P(xtrue|xsensed, cue)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
posterior

∝ P(xsensed|xtrue, cue)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
likelihood

P(xtrue|cue)⏟⎵⎵⏟⎵⎵⏟
prior

(1)

By modulating the prior distribution of the categorical stimuli (x) with 
a cue, we predict that the perception of x will shift.
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Preceding each to-be-categorized target stimulus (x), the cue 
stimulus provides predictive information about the category of the 
target stimulus. By treating this cue stimulus as a prior probability over 
x, we predicted that the determined posterior probability of x given 
sensory information and the cue stimulus would shift the classification 
of stimuli near the boundary between the two classes in the direction 
predicted by the cue stimulus.

Explicitly, we treat the likelihood of a target being sensed 
P(xsensed∣xtrue, cue) as a Gaussian probability distribution around the 
true target xtrue (refs. 6,61):

P(xsensed|xtrue) =
1

σ√2π
e−

1
2
( xtrue−xsensed

σsensed
)
2

(2)

and set the prior probability as a function of the cue

P(xtrue > categorical boundary |cue) = cueprob, (3)

where cueprob represents the predictive probability of the cue stimulus. 
In our case then,

P(xtrue|cue) = {
cueprob/64 xtrue > categorical boundary

(1 − cueprob)/64 xtrue < categorical boundary
. (4)

We predict that birds will make a categorical decision on the basis 
of the posterior,

P( right peck|xsensed, cue) = P(xtrue > categorical boundary |xsensed, cue).
(5)

Under this model, the categorical decision of the bird is modulated 
by the prior cue information, resulting in a shift in the categorical deci-
sion point along the stimulus dimension in the direction predicted by 
the cue (Fig. 2i).

Bayesian fit. In addition to fitting a psychometric function capturing 
the shape of the behavioral responses, we fit a Bayesian model reflect-
ing our probabilistic hypothesis described above. This model used 
five parameters: the shape of the Gaussian of the likelihood (σsensed), a 
parameter corresponding to side bias in the apparatus (γ) and param-
eters representing inattention to the cue stimulus (δ), the target stimu-
lus (β) and overall inattention to the task (α).

biasside(γ) = category(xtrue)(1 − 2(1 − γ)) + 1 − γ

likelihood = P(xsensed|xtrue, cue)(1 − β) + biasside(γ)β

posterior∝P(xtrue|xsensed, cue)(1 − α) + biasside(γ)α

prior = P(xtrue|cue)(1 − δ) + biasside(γ)δ

To fit the model, we used the lmfit Python package62 (see Supplemen-
tary Information for additional information).

Response time
For each behavioral trial, we measured the time between the end of a 
stimulus presentation and the time that a subject’s beak was detected 
in a behavioral response port. In Extended Data Fig. 1, we found that the 
response time varied based on stimuli and cue conditions.

We used a linear mixed-effects model to statistically test the rela-
tionship between response time and cue probability plotted in Extended 
Data Fig. 1b. We predict response time from the stimulus probability 
(given the cue), controlling for side bias and overall subject differences 
in response time (response time ~ stimulus probability + (1 + stimulus 
class∣subject)). We observe that, as expectations increase, response 
times decrease (β = −0.151, s.e.m. < 0.001, z = −188.011, P < 0.001).

To parameterize the decay in response time as a function of the 
distance in the morph from the decision or class boundary, we fit the 
decay in response time (controlling for side bias) to an exponential 
decay function (Supplementary Fig. 9). To account for side biases in 
decision making (for example, the bird having a position preference 
when engaging with the behavioral apparatus that positions them 
further toward the left or right peck port), for each analysis, we z scored 
response time for each bird’s responses to each class (over a 500-trial 
block, to account for changes in side bias over time). In addition, in 
the analyses examining response time relative to the morph interpola-
tion point, we discounted the average bias of the cue for each trial. To 
account for variability in response time related to correctness, we ran 
all response time analyses only on correct trials.

We excluded two birds from analysis (B1426, B1170) that we 
observed did not exhibit the same decay in response time as a func-
tion of distance from the decision boundary (Extended Data Fig. 1c). 
For syllable continua where a decay was observed (set at r2 > 0.001 and 
decay range > 0.1 s.d.), we found a strong relationship between the 
exponential decay constant and the psychometric slope (Extended 
Data Fig. 1d; r2 = 0.421, P = 6 × 10−8, n = 153).

Chronic electrophysiology
We used 32- or 64-channel NeuroNexus Si probes (A4x2-tet-7mm-150- 
200-121, Buzsaki32, Buzsaki64, A1x2-Edge-5mm-20-177) implanted 
either unilaterally or bilaterally. Probes were coated with PEDOT using 
an Intan RHD Electroplating Board no more than 1 week before implant. 
Probes were mounted on 3D-printed drives (described in Microdrives 
and head caps), which were stereotactically implanted using the proce-
dure outlined in Electrode implant procedure. Extracellular voltages 
were amplified and digitized at 30 kHz using an Intan RHD recording 
headstage, output through an SPI cable through an electrically assisted 
commutator to an Open Ephys recording system.

Behavioral neural acquisition interfacing with PiOperant
Behavioral and physiology data were synced using a custom-designed 
Raspberry Pi-based system (PiOperant) for automating our behav-
ioral paradigm and interfacing with the Open Ephys neural acquisi-
tion device (Supplementary Fig. 10). PiOperant interfaces with our 
behavioral panel using the Python software pyoperant (https://github.
com/gentnerlab/pyoperant). Behavioral states and audio signals were 
input and synced with Open Ephys over two HDMI inputs (digital and 
analog) and a ZMQ interface containing additional information about 
behavioral trials.

Microdrives and head caps
Microdrives and head caps (Supplementary Fig. 11) were custom 
designed over the course of this experiment and were printed using a 
Formlabs Form 3 3D printer using Formlabs standard gray resin printed 
at a resolution of 25–50 µm. Microdrives were composed of a drive, 
a shuttle and a MiniTaps 6/16" 00-90 gold screw, hand-tapped and 
fastened to the drive with a brass nut. The screw was used to raise and 
lower the shuttle manually, at a depth of 282 µm per full rotation. Head 
caps were designed to be removable and enable moving probes further 
down as well as easy to explant, allowing reuse of probes.

Electrode implant procedure
Subjects were given analgesia by means of a dose of carprofen (5 mg 
per kg) (Rimadyl) administered intramuscularly. Animals were then 
anesthetized with a gaseous mixture of isoflurane and oxygen (1–2.5%, 
liters per minute). The scalp and feathers around the scalp were then 
removed, and part of the skull over the y sinus (the stereotactic refer-
ence sinus between the cerebellum and the two hemispheres of the 
brain) was visible. A craniotomy was opened above the recording 
site. A second craniotomy for the ground was then performed several 
millimeters away from the primary craniotomy. A platinum–iridium 
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ground wire was then inserted in the craniotomy above the dura and 
glued to the skull. The baseplate for the head cap was then cemented 
(Metabond) to the skull. The durotomy was then performed in the 
original craniotomy, and the electrode, attached to the microdrive, was 
stereotactically lowered at a rate of no more than 100 µm per minute. 
Once the final site was reached, the microdrive was then cemented to 
the skull, and a silicone base was applied above the craniotomy to pre-
vent infection. The head cap was then screwed into the baseplate, pro-
tecting the recording site and probe. The headstage was then attached 
to the outside of the head cap.

In some individuals, multiple implants were performed in serial 
when one probe failed by explanting and removing the first probe and 
microdrive, creating a new craniotomy in the opposite hemisphere 
and durotomy, and implanting a new probe and microdrive. In one 
individual, two probes and drives were implanted simultaneously, 
one in each hemisphere.

Recordings and behavior blocks
Recordings were performed 24 h per day to track individual neurons 
over days. Recordings consisted of (1) behavior blocks, in which sub-
jects freely interacted with the behavioral apparatus, (2) a free feeding 
period, in which the behavioral apparatus presented food to the bird 
without requiring the bird to perform trials, (3) a passive playback 
block, in which lights were turned off and the birds were passively 
presented with stimuli and (4) a sleep block, in which the lights were 
left off and no stimuli were played back.

We recorded from ten subjects over a total of 222 d (5,317 h) of 
recordings. Chronically implanted subjects performed over 400,000 
behavioral trials during recording. In addition, during the evening after 
the birds had completed their behavioral trials for the day, we turned 
the lights out in the behavior boxes and passively played back the same 
morph stimuli to the birds, totaling 1.2 million passive playbacks while 
recording.

Chronic behavior blocks. Chronic behavior blocks were matched to 
behavior blocks without physiology. The behavioral apparatus was 
left on throughout the day, allowing subjects to initiate trials with a 
peck in the central peck port. Trials were intermittently reinforced 
with a food reward and punished with the lights briefly turning off 
in incorrect trials. Using this paradigm, subjects performed several 
thousand trials per day.

Chronic passive playback blocks. At a set time at the end of each day, 
we turned the lights off in the bird’s operant conditioning block and 
passively played back the morph stimuli to the bird. The bird’s activ-
ity and sleep state during this time were not monitored. The silence 
interval between stimuli was randomly sampled between 1.1 and 1.5 s.

Spike sorting and merging over long-term chronic recordings
Spike sorting was performed over each 12-h block of recording using 
KiloSort 2–2.5 (ref. 63) and SpikeInterface64. LFP was bandpass filtered 
between 300 and 6,000 Hz and further normalized using common 
median referencing. To retain units across days or sorts, we addition-
ally used an overlapping procedure to merge each neighboring pair of 
recordings together. To do so, we took the last 30 min of the previous 
recording and the first 30 min of the following recording and sepa-
rately sorted that hour-long recording, which overlapped with the two 
larger recordings. We then computed the overlap between units in 
the overlapping recording and each of the two full recordings. Units 
were then considered to be the same unit if their ‘agreement’ score 
(SpikeInterface; the spike coincidence of the two units) was above a 
set threshold (set at 0.5). Units from each of the larger recordings that 
were merged with the same unit in the overlapped recording were 
then merged, allowing the same unit to be tracked over multiple days 
(Extended Data Fig. 5).

Stimulus alignment
Stimulus playback was aligned to neural data using a 1-kHz sine wave 
sent from the MagPi behavioral control device to the Open Ephys acqui-
sition board collected simultaneously with neural data, alongside a 
binary switch indicating the onset and offset of playback. An additional 
message giving information about the specific trial was sent over the 
local network via ZMQ.

Localizing units
Unit locations were defined as the location of the peak recording chan-
nel on which the unit was present. The recording channel was deter-
mined from its position within the shank and the shank’s position 
relative to the stereotactic implant. Stereotactic implant locations 
were recorded relative to the y sinus between the cerebellum and two 
hemispheres of the brain, and the depth relative to the surface of the 
brain. Implant locations relative to nuclei were then determined rela-
tive to voxel mapping of the European starling brain atlas65, as shown in 
Extended Data Fig. 2a,b. We recorded from units in the primary auditory 
forebrain region field L, two secondary auditory forebrain regions (the 
caudal mesopallium and the caudal medial nidopallium) and the NCL. 
Note that, while NCL is a higher-order forebrain region implicated in 
visual and multimodal working memory66–68, our recordings were 
performed only on the most medial regions of the NCL (Extended Data 
Fig. 2b), which have been less well characterized. Sample unit spike 
trains for each nucleus are shown in Extended Data Fig. 2c.

Neural feature representation and response similarity
We represented spike trains as vectors using the methods outlined 
in Fig. 4a–f. In particular, a PSTH of spike trains was computed with 
10-ms time bins, which was then smoothed with a Gaussian kernel 
with a σ of 25 ms. Morphs were sampled at a resolution of 128 points. 
For physiological analyses, we reduced the sampling resolution, bin-
ning the 128 interpolation points into 16 points along the morph; thus, 
the neural response vectors and similarity matrices are 100 time bins 
by 16 interpolation bins and 16 interpolation bins by 16 interpolation 
bins, respectively.

We computed neural response similarity as the cosine similarity 
of the Gaussian convolved spike vectors, which has been effectively 
used to find similarity in spike trains in the past69. A number of differ-
ent similarity metrics could have been used in its place, for example, 
correlation coefficients70,71 and Euclidean distance between Gaussian 
convolved spike trains. We compared the cosine similarity to several 
other similarity metrics used in neural analyses including the correla-
tion coefficient, the Euclidean distance and the Manhattan distance 
and found broadly similar results (Supplementary Fig. 12).

Estimating a neurometric function from the similarity matrix
The neurometric function is computed on the basis of the similarity 
matrix and is detailed in Extended Data Fig. 7. For each interpolation 
point, we took the average of the within- and between-category similar-
ity (SC1 and SC2) and took the ratio ( SC1

SC1+SC2
) as the categorical similarity 

ratio. We then fit the same four-parameter logistic function as used in 
the psychometric function to the categorical similarity ratio as a func-
tion of the interpolation point.

Between-subject neurometric versus psychometric variability. 
To determine whether between-subject variability in the slope of 
the psychometric was reflected in the neurometric, we used a linear 
mixed-effects model in the Python statsmodels package: neurometric 
slope ~ morph + psychometric slope + (1∣unit). Controlling for the 
morph and random effects of the individual unit, the relationship 
between the individual variance in the psychometric slope and the neu-
rometric slope is not significant and slightly negative (t(41,171) = −5.75, 
P > 0.999, β = −0.04) and only explained an additional 0.03% of the 
variance (r2 = 0.778).
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Assessing task relevance for units
Task relevance was measured as the categoricality of the neural 
response. Unit categoricality was computed using the similarity matrix 
(as seen in Fig. 4). The similarity matrix used to compute a unit’s cat-
egoricality was the mean cosine similarity matrix across interpolation 
responses, where the cosine similarity matrix was computed over 
average response vectors for each interpolation point.

Similarity matrices were divided into four quadrants, corre-
sponding to the within-category similarities for each category and 
the between-category similarities. Categoricality was computed 
as the mean similarity in the within-category quadrants of the sim-
ilarity matrix (that is, the top left and the bottom right) minus the 
between-category similarities.

Subsetting task-relevant units
We operationalized task-relevant, categorical units on the basis of 
their response characteristics to the morph stimuli. Task-relevant 
units were determined by a threshold set in the categoricality metric. 
This threshold was set at a categoricality metric value above 0.1. These 
thresholds were set based on visual assessment of unit responses 
(Supplementary Fig. 14) and similarity matrices. For reference, figures 
showing units sorted by the categoricality metric are provided for sub-
ject (Extended Data Fig. 8), morph (Extended Data Fig. 9) and region 
(Supplementary Fig. 15).

Comparing spike rate across units, cues and morphs
The physiological analyses performed in the main text were performed 
over unit spike rates in response to the morph stimuli, where spike rate 
was z scored over the unit’s spike rates across all stimuli. Supplementary 
Fig. 13 visualizes the main effect of cue and interactions between cue 
probability and stimulus class. In addition, we shuffled the cue labels 
to ensure that our results were not due to inherent sampling biases 
present in the data (for example, a left cue is more predictive of a left 
morph point; thus, more cue left to left morph point samples exist in 
the dataset).

Cue suppresses spike rate model comparison. An analysis of variance 
compared a baseline mixed-effects model with only a random intercept 
for the unit or stimulus to a model including both a random intercept 
for the unit stimulus and the fixed effect of cue:

model0 ∶ spike rate ∼ (1|unit_stimulus)

model1 ∶ spike rate ∼ cue + (1|unit_stimulus),

where unit_stimulus is a variable representing a combination of the 
unit and the stimulus (for example, neuron 8, stimulus BF, interpola-
tion point 7).

Spike rate suppression increases with cue strength. We next tested 
the relationship between the cue’s predictive strength and the spike 
rate, again using an ANOVA between linear mixed-effects models.

model1: spike rate ∼ cue + (1|unit_stimulus)

model2: spike rate ∼ cue + cue_p_right:side + (1|unit_stimulus),

where cue_p_right is the cue probability and side is the stimulus class.

Differences in spike rate as a function of time
In the main text, we compared differences in spike rate as a function of 
their cue (that is, within versus between cue).

To ensure that the effects of spike rate modulation occur between 
cue conditions and not only between cue conditions and the uncued 
condition (where the main effect of cue on spike rate is greatest), we 

did not include the uncued condition in the spike rate differences 
between cue conditions in Fig. 5b. We only included units and stimuli 
for which we had active and passive behavioral trials (n units = 4,722). 
We then, for each unit and stimulus, took the average absolute differ-
ence in response vectors between trials for trials with the same cue 
and trials with different cues. The difference between the average 
absolute difference between cues, minus within cues, will equal zero 
when there is no difference between cue conditions. To ensure that no 
factors exogenous to between-cue differences are causing this effect, 
in Supplementary Fig. 16, we show the same analysis where cue labels 
have been shuffled within stimuli.

Within-cue response similarity
For each unit and cue, we computed the cosine similarity matrix across 
each morph. Cosine similarity matrices were computed by taking the 
average cosine similarity across trials for each interpolation point (16) 
in the morph. Analyses were only performed over active behavioral 
trials in which the subject provided a response. We then contrasted 
the cosine similarity matrices across different cue conditions. Sup-
plementary Fig. 6h shows the average cosine similarity across left 
cues subtracted from the average cosine similarity across right cues. 
Blue in the top left of the plot (the orange bounding box) depicts less 
similarity in the predicted left class in left-cued trials. The reverse is true 
for the red at the bottom right. We statistically test this with a linear 
mixed-effects model (cosine similaritycue left − cue right ~ side + (1∣unit) +  
(side∣unit); β = 0.009, s.e.m. < 0.001, P < 0.001). We measured 
this relationship, showing that predicted morph classes are less 
similar within class in Supplementary Fig. 6j. Each point and 
confidence interval consists of the within-class similarity rela-
tive to the same unit’s response to uncued stimuli across trials. 
The negative relationship shows that higher-probability cued 
trials exhibit less similar responses. We statistically test this 
with a linear mixed-effects model (cosine similarityrel. cue none ~  
probability class + (1∣unit) + (probability class∣unit); probability class: 
β = −0.01, s.e.m. < 0.001, P < 0.001). In a similar manner as in Supple-
mentary Figs. 13 and 16, we repeated this analysis over the same data in 
which cue labels had been shuffled within unit or interpolation. In the 
shuffled condition, we observed that the effect was removed.

Acuity trade-off model
Central to the acuity trade-off model is the idea that focusing on 
task-relevant stimulus dimensions improves the precision of their 
representation but at the expense of less accurate representations of 
irrelevant dimensions. Thus, a key feature of this model is that noise in 
neural measurement and resulting representations decreases for stim-
uli in expected regions of stimulus space. This decrease in noise yields 
neural responses that are more easily separable. For example, consider 
two simple, 1D Gaussian distributions over our signal dimension (that is, 
the likelihood for two similar stimuli in our Bayesian model) separated 
by a fixed distance. Reducing measurement error (σ) decreases the 
overlap between the two distributions and thus decreases the similar-
ity (on average) between points sampled from those distributions 
(Extended Data Fig. 3a). Somewhat paradoxically, when the means of the 
distributions are sufficiently close in 1D space, reducing σ results in an 
increase in similarity between points sampled from those distributions 
(Extended Data Fig. 3b). For example, for a 1D Gaussian distribution 
when the mean is equal and only the variance is changed, the average 
difference between two points sampled is 2σ/√(π). The average differ-
ence between two points sampled from a Gaussian distribution with 
a standard deviation of 1 (N(0,1)) is 1.13 and with a standard deviation 
of 2 (N(0,2)) is 2.26. This effect is illustrated in the context of a single 
dimension from our current stimulus set (that is, along a single syl-
lable continuum) in Extended Data Fig. 3c. To generate Extended Data 
Fig. 3c, we sampled from Gaussian distributions with standard devia-
tion (σ) along the syllable continuum and took the average difference 
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between samples at each point along the syllable continuum as simi-
larity. Extended Data Fig. 3c then shows the difference between two 
similarity matrices when sigma is varied to mimic a cue that predicts 
the left or right stimulus class along the continuum. In this scenario, the 
predicted increase in similarity along the diagonal contrasts with our 
empirical observations of a decrease in similarity, particularly along 
the diagonal within the cued stimulus class (Extended Data Fig. 3d).

To account for this discrepancy, we can expand the 1D model to 
account for stimulus dimensions that are irrelevant to the task imme-
diately at hand (that is, on a given trial). This includes, for example, 
acoustic features that might be relevant for other syllable continua, 
response classes and estimates of acoustic characteristics exogenous 
to the task-relevant stimuli such as background acoustics or other char-
acteristics not relevant to classification but that are also represented 
by neural responses.

Under the assumption that the capacity to measure all possible 
characteristics of the sensory environment is limited by resources, 
improved accuracy in representing a task-relevant stimulus dimension 
(here, the syllable continuum) comes at a cost of decreased representa-
tion accuracy on task-irrelevant stimulus dimensions. We refer to this 
model as the ‘acuity trade-off model’, referring to the trade-off that exists 
in measuring and representing all features of our environment, requiring 
us to selectively attend to and represent only task-relevant features with 
high fidelity. Evidence for this model comes from both behavior, where 
limited attentional resources are available to keep track of different 
feature dimensions simultaneously53,54, as well as theories and empiri-
cal observations of neural computation, where neural coding has been 
observed to shift to decrease noise in stimulus-relevant dimensions at 
the expense of increasing noise in stimulus-relevant dimensions72,73.

By accounting for the task-irrelevant dimensions (Extended Data 
Fig. 3e), we observe, as task-irrelevant dimensions are added, that the 
diagonal line (corresponding to the change in the similarity of nearby 
signals on the morph dimension) increases. This reflects expecta-
tion, reducing the similarity of neural response along the diagonal 
in this model. The plots in Extended Data Fig. 3e are generated in the 
same manner as in Extended Data Fig. 3c, except where additional 
task-irrelevant dimensions are added, and, in contrast to the sharpen-
ing of the task-relevant dimension, the noise in measurement of the 
task-relevant dimension increases. A sample of points sampled from 
the one task-irrelevant dimension version of this model is provided 
in Extended Data Fig. 3f, where noise in sampling in the task-relevant 
dimension is decreased for the cued signal, whereas noise in sampling 
is increased for the behaviorally irrelevant dimension when the sig-
nal is cued. This decrease in similarity when additional behaviorally 
irrelevant noise is present (here through the addition of behaviorally 
irrelevant dimensions) occurs because the most similar signals (near 
the diagonal) are most susceptible to becoming more distant in rep-
resentation when task-irrelevant noise is increased.

A self-contained Jupyter notebook (Google Colab link: https://
colab.research.google.com/drive/1ZqOWgfPhaBOuoSYOr7UvR_wwD-
HYIdTsU) is available to reproduce this figure and aid in understanding 
the model through interaction.

Maximum noise entropy receptive fields
We used the MNE model to calculate receptive fields for all task-relevant 
units55,74 (Extended Data Fig. 4). MNE models were computed sepa-
rately for each unit and predictive cue condition. Model fitting used 
a jackknife procedure, averaging estimates from four subsets of the 
training data to yield the final parameters. Model-predicted spiking 
probabilities were correlated with empirical spike trains on held-out 
trials to evaluate receptive field model performance (Extended Data 
Fig. 4). The correlation values were then averaged across trials within 
a given cue condition.

To assess whether expectation modulates receptive fields, 
we trained MNEs for each neuron using the target syllable-evoked 

responses from trials with a valid cue, that is, trials where the cue 
accurately predicted the correct response to the subsequent target 
stimulus. We held out a subset of cue-valid trials equal to the number of 
cue-invalid trials (trials where the cue predicted the incorrect response) 
collected during the same recording session. We then used the model 
to predict responses on these held-out trials and used the correlation 
coefficient between predicted and actual responses (averaged across 
trials for a given predictive cue) as a measure of model performance 
(Extended Data Fig. 4c). To ensure consistency, we repeated these pre-
diction tests using four different random samples of held-out cue-valid 
trials and averaged performance across these four samples. If the 
expectation does not alter the receptive field, then the models should 
fit responses in both the valid and invalid conditions equally well. We 
used a linear mixed-effects model with a fixed effect for cue validity and 
random effects for each unit’s identity and recording day to predict trial 
correlation values. We used paired t-tests for post hoc comparisons.

To assess cue-dependent gain and tuning changes in the recep-
tive fields, we first fit an MNE to the responses of a neuron in the NC 
condition and then refit responses for that same neuron to held-out 
data from the ‘cued’ and ‘NC’ conditions, using the no-cue refit as the 
null hypothesis for change across conditions. As proxies for feature 
tuning and gain of the receptive field, we examined changes in the 
orientation and magnitude of the MNE feature vectors (the h and J 
terms), respectively.

In the context of the MNE model, the orientation of the feature 
vector in high-dimensional stimulus space defines the features to 
which the neuron is tuned. If those features change, then the vec-
tor orientation changes. To measure this change, we computed the 
cosine distance between feature vectors before and after refitting. 
Because the cosine distance is invariant to scaling, a change in gain 
alone will not alter the orientation of the feature vector. By contrast, 
the orientation of the full feature vectors does change significantly 
between the ‘cued’ and the ‘NC’ conditions (linear mixed effects, 
cos-diff ~ cue present + (1∣unit) + (1∣day); β = 0.048, s.e.m. = 0.003, 
z = 17.838, P < 0.001). We also examined the orientation of the linear and 
nonlinear components (h and J) separately. In both cases, the feature 
vector orientation changes significantly more for the ‘cued’ condition 
than for the ‘NC’ condition (linear mixed effects, cos-diff-h ~ cue pre-
sent + (1∣unit) + (1∣day): β = 0.068, s.e.m. = 0.007, z = 10.369, P < 0.001; 
cos-diff-J ~ cue present + (1∣unit) + (1∣day): β = 0.048, s.e.m. = 0.003, 
z = 18.042, P < 0.001). To examine the nonlinear changes in more detail, 
we tried to look at changes in matched sets of nonlinear features across 
conditions. This is difficult to do with strict assurance, but, as a proxy to 
feature similarity, we restricted the analysis to only the closest pairs of 
eigenvectors (that is, those with the minimum pairwise cosine distance 
from initial and refit MNE J matrices). Even here, the minimum change 
in these nearest eigenvectors is larger for the ‘cued’ condition than for 
the ‘NC’ condition (linear mixed effects, eig-min-cos-dist ~ cue pre-
sent + (1∣unit) + (1∣day): β = 0.019, s.e.m. = 0.002, z = 8.974, P < 0.001). 
Collectively, these results consistently support our claim that expec-
tation modulates the tuning of receptive fields to explicit stimulus 
features.

The foregoing feature vector orientation analyses rule out the 
possibility that cue-dependent response modulation is explained 
entirely by changes in the receptive field gain, but changes in gain 
may still contribute to the modulation. To assay the change in recep-
tive gain directly, we first compared the change in the magnitude of 
the linear feature vector (h), taken as the change in the L2 norm of the 
linear feature vector, after refitting to the cue and NC conditions. We 
found that the magnitude of the linear feature vector was significantly 
greater for the ‘cued’ condition than for the ‘NC’ condition (linear 
mixed effects, mag-diff ~ cue present + (1∣unit) + (1∣day); β = 0.004, 
s.e.m. = 0.001, z = 4.752, P < 0.001). We used a similar logic to examine 
the change in magnitude of nonlinear features across cue conditions 
by summing the absolute values of all eigenvalues for the J matrix. As 
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with the linear feature, this proxy for the gain of the nonlinear features 
was significantly greater in the ‘cue’ condition than in the ‘NC’ condition 
(linear mixed effects, eig-diff ~ cue present + (1∣unit) + (1∣day); β = 0.186, 
s.e.m. = 0.031, z = 6.052, P < 0.001). We note that these cue-dependent 
shifts in the magnitudes of the linear and quadratic MNE terms corre-
spond directly to the width and the height of the tuning curves modeled 
in high-dimensional stimulus space, consistent with our conclusion 
that expectations enhance the selectivity of receptive fields. These 
more selective models produce fewer spikes with higher confidence, 
aligning with the expectation-induced firing rate suppression we 
observe in our empirical data.

To better understand how changes in MNE receptive fields are 
related to expectation-driven changes in the sharpness of the likelihood 
function, we attempted to replicate the empirical shifts in similarity 
(Fig. 6h) using MNE models. To do this, we fit MNE models with target 
syllable data for each cue condition and then passed all target sylla-
bles through the model to generate predicted spiking probabilities 
for each stimulus and cue condition. We pooled the produced spik-
ing probability vectors across models and separated them by unit, 
interpolation and cued response (‘left’ versus ‘right’). We then binned 
the spiking probability vectors for each unit, interpolation and cued 
response into 16 bins spanning the target syllable continuum. We 
computed the cosine similarity between pairs of probability vectors 
within and between bins to generate a similarity matrix for each unit, 
interpolation and cued response. We subtracted the ‘left’ and ‘right’ 
similarity matrices for each unit and interpolation and averaged the 
resulting difference matrices across all units and interpolations. We 
performed the analysis for both the linear (only h term included) and 
full (h and J terms included) MNE (Supplementary Figs. 3a,b and 4).  
As a control, we completed the same analyses using a version of each 
MNE feature vector that was shuffled before producing spiking probabil-
ity vectors for each stimulus and then subtracted the resulting similarity 
matrix from that for the unshuffled MNEs. We used a linear mixed-effects 
model with a fixed effect for cue validity and random effects for each 
unit’s identity and recording day to predict similarity values.

Stimulus decoder
For each population and syllable continuum, we trained a logistic 
regression with L2 regularization and balanced class weighting using 
scikit-learn. Models were trained to predict the bin in the syllable con-
tinuum where the stimulus occurred, where the stimulus continua were 
split into 16 bins (from the total of 128 interpolation points along the 
syllable continuum). Because individual neurons were tracked longitu-
dinally rather than in sessions, neural population representations are 
sparse; not all neurons are present during any given trial.

Activity for each neuron was represented as a histogram aligned to 
the 1-s playback of the target syllable (we used 20 time bins, each cor-
responding to 50 ms). Time-varying spike rates were then z scored for 
each neuron and clipped between −4 and 4 s.d. to weight units equally 
in the subsequent PCA projection. Thus, at this stage in processing, 
population activity is represented as a matrix of shape (number of trials, 
number of units, 20). Neural populations were projected into PCA space 
(256 dimensions), fit to the training data (passive and uncued trials). The 
decoder was trained on all trials that were either uncued (that is, with 
no cue or with the uninformative cue) or passive playback trials where 
the bird was not performing the task. Analyses were then performed 
on the held-out cued data, specifically looking at prediction accuracy 
between cue-valid and cue-valid trials. Any population without at least 
one cue-invalid sample for each syllable continuum bin was discarded.

Neurometric across cue conditions
For each unit and syllable continuum, we fit a neurometric model to 
spike response vectors (as described earlier). To compare changes in 
the neurometric as a function of cue probability, we subsetted units or 
morphs where there existed enough trials for each morph and cue (at 

least one per stimulus) to compute a similarity matrix. We additionally 
excluded any model fits where the fit inflection point did not converge. 
In total, this yielded 1,762 units in which we had well-fit neurometrics.

Morph prediction behavior
The primary task uses cue syllables to predict the likely correct 
response class associated with the target stimulus on the current trial 
(that is, the left and right stimulus classes, corresponding to the left or 
right half of each morph), biasing perceptual decision making toward 
a stimulus class. The morph prediction task instead uses cue syllables 
to predict the morph, independent of the stimulus class. We used this 
behavior to assess whether the accuracy increases and the psychomet-
ric slope sharpens when a morph is expected.

We used three of the morphs from the original dataset (AE, BF, CG). 
The trial structure is as follows. At the beginning of each trial, initiated 
by a peck in the center peck port, one of three things would happen. (1) 
In 10% of trials, a morph would be played without any cue. (2) In another 
10% of trials, an uninformative cue would play, which equally predicts all 
three morphs. (3) In the remaining 80% of trials, an informative cue would 
play. The informative cue predicted a single morph (that is, morphAE 
follows cueAE) 80% of the time, and the remaining 20% of trials following 
cueAE are divided between morphBF and morphCG. This yields trials with 
four sets of expectations. In the uncued trial, the probability that any 
given morph will play after a center peck is only 1/30 (10% of trials have 
no cue, and there is a one-in-three chance of hearing each morph). After 
the uninformative cue plays, the probability that any given morph will 
play is 1/3 (equal chances for each morph). After an informative cue plays, 
the probability that the predicted morph will play is 0.8, and each of the 
nonpredicted morphs is 0.1. To focus on challenging trials that define 
the psychometric slope, we sampled only the 32 points surrounding the 
midpoint of the original 128 points in the morph. In addition, we applied 
white noise over the stimulus (at 25% of the maximum amplitude) to keep 
the accuracy around 70% and avoid overtraining.

We retrained two birds on the modified task (B1590 and B1591) 
over approximately 7 weeks. B1590 engaged in 17,069 trials, while 
B1591 engaged in 21,879 trials. We compared the accuracy across cue 
conditions as well as the psychometric slope. To compare accuracy, we 
fit a linear mixed-effects model, predicting correctness for each trial by 
the cue probability, controlling for the subject as a random intercept 
and slope. To compare psychometric fits, we used a bootstrapping 
approach. We estimated the psychometric slope by sampling 1,000 
trials (with replacement) from each morph for each subject and fit-
ting the psychometric function to those trials. We repeated this 1,000 
times and took the mean psychometric slope parameter. This method 
accounts for differing numbers of trials across cue conditions and 
stochastic error in model fitting. To then statistically test the relation-
ship between cue probability and psychometric slope, we z scored the 
psychometric slope within subject and morph. We then computed 
the Pearson correlation between cue probability and z-scored slope. 
Finally, we compared our observed correlation between cue probability 
and slope to a distribution generated by shuffling the cue probabilities 
(shuffled within subject and morph) 1,000 times.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. The experiments were not rand-
omized. The investigators were not blinded to allocation during experi-
ments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data are available at https://zenodo.org/records/7363595 (ref. 75).
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Code availability
Code and code documentation are available at https://github.com/
timsainb/cdcp_paper.
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Extended Data Fig. 1 | Response times reflect Bayesian integration. (A) 
Response time across birds for correct versus incorrect trials. (B; top) The 
imposed prior probability in the task for each condition. (B; bottom) Average 
response time over morph for each cue condition (mean and 95% bootstrapped CI). 
(C) Response time over the morph for each bird (mean and 95% bootstrapped CI).  

(D) Decay constants of exponential decay fit to reaction time as a function of 
distance from decision boundary, in relation to the slope of the fit psychometric 
function, for each bird and morph. Point colors reflect the morph categories (as 
in Fig. 3G) (Pearson’s correlation, n=121).
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Extended Data Fig. 2 | Recording sites. (A) Diagram of auditory input to the 
songbird brain. Nuclei OV projects to the primary auditory region Field L, which 
has bidirectionally projections with NCM and CMM. NCL (not pictured), lateral to 
NCM, additionally exhibits bilateral projections with Field L. (B) A visualization of 
recording sites, shown over top of the starling brain atlas65. Colors are consistent 
with panel A, with NCL being shown in purple. (C) The top of each panel shows a 

spectrogram of the morph stimulus played back. Below, a trace is shown for three 
cue conditions (No cue, P(Rl∣C) = 0.125, and P(Rl∣C) = 0.875) corresponding to the 
average Gaussian convolved spike vector and 95% CI for active trials. Below the 
trace are sample spike rasters for each cue condition, where each row is a trial. 
Below the rasters, the sample trace and raster plots are repeated for the same unit 
in the passive trial condition.
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Extended Data Fig. 3 | An outline of the acuity trade-off model. (A) A decrease 
in measurement/representational noise reduces similarity and improves 
discriminability between stimuli. (B) When stimuli are sampled from regions 
of stimulus space that are sufficiently close to one another, similarity increases 
in the task-relevant dimension. (C) The difference between similarity matrices 
for the left-cued and right-cued syllables, based upon the 1D task-relevant 
model. The example from (A) and (B) are marked as dots with arrows pointing 
towards them. (D) Empirical results from our study. The observed shift in spike 
train vector cosine similarity for left-cued minus right-cued trials. The shift is 
depicted here is averaged across units and morphs. Compare to (C), where the 

diagonal does not match the predictions from the 1D model. (E) Predictions of 
the acuity trade-off model. If there are 0 task-irrelevant dimensions, points that 
are close to each other in stimulus space will become more similar because noise 
in measurement is reduced. As more task-relevant dimensions are added, the 
similarity of close points decreases. (F) A scatterplot of the noise in measurement 
for task-relevant and irrelevant dimensions under the acuity trade-off model. 
When a stimulus is cued, the noise in measurement is reduced in a task-relevant 
dimension (here the morph dimension) and noise is increased in another 
dimension.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-01899-1

Extended Data Fig. 4 | Maximum Noise Entropy encoder model fit to neural 
data. (A) A sample MNE receptive field prediction. (top) Raw spectrogram of 
the target syllable on an individual trial. (middle) Actual (red) and receptive field 
model predicted (teal) spiking probability (same trial). (bottom) Raster plot of 
spiking events (same trial). (B) Correlation values between actual and predicted 
spiking for cue-valid vs. cue-invalid trials. Trial correlation values were averaged 

across valid or invalid trials for each unit on an example recording day (N = 98 
units). (C) Box plots for the distribution of trial averaged correlation values (as in 
H) for all units broken down by cue-validity and strength. (* indicates significantly 
increased correlation value for valid verses invalid trials, post-hoc t-test, Cue 
0.125, t(9078) = 19.5, p < 0.001; Cue 0.25, t(9377) = 18.2, p < 0.001; Cue 0.75, t(9379) 
= 18.6, p < 0.001; Cue 0.875, t(9101) = 17.0, p < 0.001).
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Extended Data Fig. 5 | Example units (rows) for each brain region, showing stability in response profiles to example stimuli (columns) across days/weeks. The 
units shown are the 3 longest-held units for each brain region. PSTHs are shown for the 1-second reinforced stimuli.
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Extended Data Fig. 6 | Spectrograms of 8 sample morph points (of 128 total) from each morph used in the experiment. The starting morph points are written above 
the left and rightmost syllables.
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Extended Data Fig. 7 | Method for computing a neurometric function from a similarity matrix. SC1 (Similarity to Category 1) and SC1 (Similarity to Category 2) 
represent the within and between category similarities.
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Extended Data Fig. 8 | Sample units for each subject sorted by the categoricality metric. Each plot depicts the average firing rate across a randomly sampled unit, 
sorted by the categoricality metric, with time on the X-axis and morph position on the Y-axis. Rows correspond to the subject written on the left.
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Extended Data Fig. 9 | Sample units for each morph sorted by the categoricality metric. Each plot depicts the average firing rate across a randomly sampled unit, 
sorted by the categoricality metric, with time on the X-axis and morph position on the Y-axis. Rows correspond to the morph written to the left.
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Software and code

Policy information about availability of computer code

Data collection Electrophysiology data were collected using Open Ephys. Behavioral data were collected using the pyoperant package for Python.

Data analysis Data analyses are all in Python, and are available on GitHub (https://github.com/timsainb/cdcp_paper).  

Software versions: 
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- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All code for analysis are available on GitHub upon publication (https://github.com/timsainb/cdcp_paper).  

Ephys and behavioral data have been deposited to Zenodo (https://zenodo.org/records/7363595).

Research involving human participants, their data, or biological material
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Population characteristics N/A
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Ethics oversight N/A
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All studies must disclose on these points even when the disclosure is negative.

Sample size 20 European starlings were used (10 for behavior only). This number was chosen to provide sufficient behavioral data across subjects, as well 

as a large sampling of neural populations Sample size was chosen to match prior sample sizes used in our lab

Data exclusions No data were excluded.

Replication A description and scripts for the behavior are avaliable with the analysis code. Ephys coordinates are provided.  

A single dataset was created and analyzed, for which most analyses, except where noted in the manuscript (e.g. bootstrapping), were 

deterministic.

Randomization The same conditions were presented to each subject in our experiment, with only the neural recording location differing. 

Blinding Conditions were constant across subjects. 
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Plants
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ChIP-seq
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MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
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Laboratory animals No laboratory animals were used

Wild animals European starlings, wild-caught. Sex unknown, age unknown. Starlings were caught by a 3rd party airport groundskeeper and 

transferred to UCSD. They were then kept in an outdoor aviary until used in our experiment. Animals used in physiology experiments 

were sacrificed after the experiment using approved university protocols. Behavioral subjects were kept to be used in additional 

experiments. 

Reporting on sex We were not able to sex the subjects. 

Field-collected samples No field collected samples were used.

Ethics oversight All procedures were approved by the Institutional Animal Care and Use Committee of the University of California (S05383)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
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the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
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